
pmid: 28680239
pmc: PMC5488125
Le moyen dit de Schwab-Borchardt joue un rôle important dans la théorie des moyens (bivariés). Il comprend beaucoup de moyens standard, tels que la moyenne logarithmique, les premier et deuxième moyens de Seiffert et la moyenne de Neuman-Sándor. Dans cet article, nous étudions une approche qui nous permet de construire une classe de nouveaux moyens. Cette classe comprend la moyenne de Schwab-Borchardt (généralisée) et d'autres moyens anciens/nouveaux également dérivés.
La llamada media de Schwab-Borchardt juega un papel importante en la teoría de los medios (bivariados). Incluye muchas medias estándar, como la media logarítmica, la primera y segunda medias de Seiffert y la media de Neuman-Sándor. En este artículo, investigamos un enfoque que nos permite construir una clase de nuevos medios. Dicha clase incluye la media de Schwab-Borchardt (generalizada) y otros medios antiguos/nuevos derivados también.
The so-called Schwab-Borchardt mean plays an important role in the theory of (bivariate) means. It includes a lot of standard means, such as the logarithmic mean, the first and second Seiffert means and the Neuman-Sándor mean. In this paper, we investigate an approach which allows us to construct a class of new means. Such class includes the (generalized) Schwab-Borchardt mean and other old/new means derived as well.
يلعب ما يسمى بمتوسط شواب بورشاردت دورًا مهمًا في نظرية الوسائل (ثنائية المتغير). ويشمل الكثير من الوسائل القياسية، مثل المتوسط اللوغاريتمي، ومتوسط سيفرت الأول والثاني، ومتوسط نيومان ساندور. في هذه الورقة، نتحقق من نهج يسمح لنا ببناء فئة من الوسائل الجديدة. تشمل هذه الفئة متوسط شواب بورشاردت (المعمم) وغيرها من الوسائل القديمة/الجديدة المشتقة أيضًا.
Statistics and Probability, Artificial intelligence, Class (philosophy), Construct (python library), Matrix Inequalities and Geometric Means, Mathematical analysis, Schwab-Borchardt mean, QA1-939, FOS: Mathematics, weighted mean, Logarithm, Means, Geometric Means, Research, Applied Mathematics, Statistics, Stability of Functional Equations in Mathematical Analysis, Computer science, Programming language, Bivariate analysis, Logarithmic mean, Physical Sciences, bivariate mean, Mathematics, Detection and Handling of Multicollinearity in Regression Analysis, Generalized mean
Statistics and Probability, Artificial intelligence, Class (philosophy), Construct (python library), Matrix Inequalities and Geometric Means, Mathematical analysis, Schwab-Borchardt mean, QA1-939, FOS: Mathematics, weighted mean, Logarithm, Means, Geometric Means, Research, Applied Mathematics, Statistics, Stability of Functional Equations in Mathematical Analysis, Computer science, Programming language, Bivariate analysis, Logarithmic mean, Physical Sciences, bivariate mean, Mathematics, Detection and Handling of Multicollinearity in Regression Analysis, Generalized mean
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
