
arXiv: 2102.07173
In 1979 Valiant introduced the complexity class VNP of p-definable families of polynomials, he defined the reduction notion known as p-projection and he proved that the permanent polynomial and the Hamiltonian cycle polynomial are VNP-complete under p-projections. In 2001 Mulmuley and Sohoni (and independently Bürgisser) introduced the notion of border complexity to the study of the algebraic complexity of polynomials. In this algebraic machine model, instead of insisting on exact computation, approximations are allowed. This gives VNP the structure of a topological space. In this short note we study the set VNPC of VNP-complete polynomials. We show that the complement VNP \ VNPC lies dense in VNP. Quite surprisingly, we also prove that VNPC lies dense in VNP. We prove analogous statements for the complexity classes VF, VBP, and VP. The density of VNP \ VNPC holds for several different reduction notions: p-projections, border p-projections, c-reductions, and border c-reductions. We compare the relationship of the completeness notions under these reductions and separate most of the corresponding sets. Border reduction notions were introduced by Bringmann, Ikenmeyer, and Zuiddam (JACM 2018). Our paper is the first structured study of border reduction notions.
Theorem 1 has been strengthened. The topology has been adjusted. Section 7 is new
FOS: Computer and information sciences, computational complexity, reductions, Computational Complexity (cs.CC), 68Q17, Computer Science - Computational Complexity, Complexity classes (hierarchies, relations among complexity classes, etc.), border complexity, algebraic complexity theory, F.1.3, theory of computation
FOS: Computer and information sciences, computational complexity, reductions, Computational Complexity (cs.CC), 68Q17, Computer Science - Computational Complexity, Complexity classes (hierarchies, relations among complexity classes, etc.), border complexity, algebraic complexity theory, F.1.3, theory of computation
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
