Downloads provided by UsageCounts
handle: 10261/167087 , 2117/108275
The final publication is available at link.springer.com This paper describes two sequential methods for recovering the camera pose together with the 3D shape of highly deformable surfaces from a monocular video. The nonrigid 3D shape is modeled as a linear combination of mode shapes with time-varying weights that define the shape at each frame and are estimated on-the-fly. The low-rank constraint is combined with standard smoothness priors to optimize the model parameters over a sliding window of image frames. We propose to obtain a physics-based shape basis using the initial frames on the video to code the time-varying shape along the sequence, reducing the problem from trilinear to bilinear. To this end, the 3D shape is discretized by means of a soup of elastic triangular finite elements where we apply a force balance equation. This equation is solved using modal analysis via a simple eigenvalue problem to obtain a shape basis that encodes the modes of deformation. Even though this strategy can be applied in a wide variety of scenarios, when the observations are denser, the solution can become prohibitive in terms of computational load. We avoid this limitation by proposing two efficient coarse-to-fine approaches that allow us to easily deal with dense 3D surfaces. This results in a scalable solution that estimates a small number of parameters per frame and could potentially run in real time. We show results on both synthetic and real videos with ground truth 3D data, while robustly dealing with artifacts such as noise and missing data. Peer Reviewed
Àrees temàtiques de la UPC::Matemàtiques i estadística, Sequential nonrigid structure from motion, Sequential nonrigid structure from motion, Dense reconstruction, Modal analysis, Finite elements, Modal analysis, Classificació INSPEC::Modelling, Finite elements, :Matemàtiques i estadística [Àrees temàtiques de la UPC], Dense reconstruction, :Modelling [Classificació INSPEC]
Àrees temàtiques de la UPC::Matemàtiques i estadística, Sequential nonrigid structure from motion, Sequential nonrigid structure from motion, Dense reconstruction, Modal analysis, Finite elements, Modal analysis, Classificació INSPEC::Modelling, Finite elements, :Matemàtiques i estadística [Àrees temàtiques de la UPC], Dense reconstruction, :Modelling [Classificació INSPEC]
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 16 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 82 | |
| downloads | 174 |

Views provided by UsageCounts
Downloads provided by UsageCounts