
Graphical models are important tools for representing and analyzing uncertain information. Diverse inference methods were developed for efficient computations in these models. In particular, compilation-based inference has recently triggered much research, especially in the probabilistic and the possibilistic frameworks. Even though the inference process follows the same principle in the two frameworks, it depends strongly on the specificity of each of them, namely in the interpretation of handled values (probability\possibility) and appropriate operators (*\min and +\max). This paper emphasizes on common points and unveils differences between the compilation-based inference process in the probabilistic and the possibilistic setting from a spatial viewpoint.
[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI]
[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI]
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
