
Abstract At least six species of eukaryotic microalgae inhabit the acidic (pH 2.4–2.7), metal-rich mine waters from ponds in the copper mine district of Mynydd Parys (N Wales, UK). Consequently, these ponds constitute interesting natural laboratories for analysis of adaptation by microalgae to extremely stressful conditions. To distinguish between the pre-selective and post-selective origin of adaptation processes that allow the existence of microalgae in these ponds, a Luria-Delbruck fluctuation analysis was performed with the chlorophycean Dictyosphaerium chlorelloides isolated from non-acidic waters. In this analysis, natural Mynydd Parys pond water (MPW) was used as selective factor. Pre-selective, resistant D. chlorelloides cells appeared with a frequency of 1.6 × 10−6 per cell per generation. MPW-resistant mutants, with a diminished Malthusian fitness, are maintained in non-extreme waters as the result of a balance between new MPW-resistant cells arising by mutation and MPW-resistant mutants eliminated by natural selection (equilibrium at ca. 19 MPW-resistant per 107 wild-type cells). We propose that the microalgae inhabiting these stressful ponds could be the descendents of chance mutants that arrived in the past or are even arriving at the present.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 36 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
