
arXiv: 1503.00544
An efficient method for calculating inclusive conventional and prompt atmospheric leptons fluxes is presented. The coupled cascade equations are solved numerically by formulating them as matrix equation. The presented approach is very flexible and allows the use of different hadronic interaction models, realistic parametrizations of the primary cosmic-ray flux and the Earth's atmosphere, and a detailed treatment of particle interactions and decays. The power of the developed method is illustrated by calculating lepton flux predictions for a number of different scenarios.
8 pages, 10 figures, for Proceedings of the International Symposium for Very-High Energy Cosmic-Ray Interactions (ISVHECRI 2014)
High Energy Astrophysical Phenomena (astro-ph.HE), High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), Physics, QC1-999, FOS: Physical sciences, Astrophysics - High Energy Astrophysical Phenomena
High Energy Astrophysical Phenomena (astro-ph.HE), High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), Physics, QC1-999, FOS: Physical sciences, Astrophysics - High Energy Astrophysical Phenomena
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 85 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
