
Talagrand has shown [4, p. 76] that there exists a continuous linear operator from L1[0, 1] to c0 which is not a Dunford-Pettis operator. In contrast to this result, Gretsky and Ostroy [2] have recently proved that every positive operator from L[0, 1] to c0 is a Dunford-Pettis operator, hence that every regular operator between these spaces (i.e. a difference of positive operators) is Dunford-Pettis.
Linear operators on function spaces (general), Dunford-Pettis operator, Linear operators on ordered spaces, Radon-Nikodým, Kreĭn-Milman and related properties
Linear operators on function spaces (general), Dunford-Pettis operator, Linear operators on ordered spaces, Radon-Nikodým, Kreĭn-Milman and related properties
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
