
A well-known question asks whether any two non-isometric finite volume hyperbolic 3-manifolds are distinguished from each other by the finite quotients of their fundamental groups. At present, this has been proved only when one of the manifolds is a once-punctured torus bundle over the circle. We give substantial computational evidence in support of a positive answer, by showing that no two manifolds in the SnapPea census of 72 942 finite volume hyperbolic 3-manifolds have the same finite quotients.
16 pages, 3 figures
Mathematics - Geometric Topology, 20E18, 57M27, 20E26, 20-04, FOS: Mathematics, Geometric Topology (math.GT), Group Theory (math.GR), Mathematics - Group Theory
Mathematics - Geometric Topology, 20E18, 57M27, 20E26, 20-04, FOS: Mathematics, Geometric Topology (math.GT), Group Theory (math.GR), Mathematics - Group Theory
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
