
It is shown that the category of directed graphs is isomorphic to a subcategory of the variety S of all pseudocomplemented semilattices which contains all homomorphisms whose images do not lie in the subvariety B of all Boolean pseudocomplemented semilattices. Moreover, the functor exhibiting the isomorphism may be chosen such that each finite directed graph is assigned a finite pseudocomplemented semilattice. That is to say, it is shown that the variety S of all pseudocomplemented semilattices is finite-to-finite B-relatively universal. This illustrates the complexity of the endomorphism monoids of pseudocomplemented semilattices since it follows immediately that, for any monoid M, there exists a proper class of non-isomorphic pseudocomplemented semilattices such that, for each member S, the endomorphisms of S which do not have an image contained in the skeleton of S form a submonoid of the endomorphism monoid of S which is isomorphic to M.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
