
SynopsisLet (1) x′ = f(t, x) be any differential equation and S0 the set of solutions of (1) with open domain. It is known that for every g ∊ S0 a non-continuable (= saturated) ∊ S0 exists which is an extension of g. Usually is represented in the form is a sequence in S0 defined by some sort of a variant of what is called ‘recursive definition’ in set theory. It will be shown that a functionexists (P(S0) is the power set of S0) such that the above-mentioned variant can be given the form: There exists a sequence in S0 such that
General theory for ordinary differential equations
General theory for ordinary differential equations
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
