<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The use of major nutrient-containing solid residuals, such as recycled solid waste materials, has a strong potential in closing the broken nutrient cycles. In this work, biofuel ash (BA) combined with green waste compost (GWC) was used as a nutrient source to improve soil properties and enhance wheat and triticale yields. The main goal was to obtain the nutrient and heavy metal release dynamics and ascertain whether GWC together with BA can potentially be used for concurrent bioremediation to mitigate any negative solid waste effects on the environment. Both BA and GWC were applied in the first year of study. No fertilization was performed in the second year of the study. The results obtained in this work showed the highest spring wheat yield when the GWC (20 t ha−1) and BA (4.5 t ha−1) mixture was used. After the first harvest, the increase in the mobile forms of all measured nutrients was detected in the soil with complex composted materials (GWC + BA). The content of heavy metals (Cd, Zn, and Cr) in the soil increased significantly with BA and all GWC + BA mixtures. In both experiment years, the application of BA together with GWC resulted in fewer heavy metals transferred to the crops than with BA alone.
biofuel ash, nutrients, S, green waste compost, Agriculture, heavy metals
biofuel ash, nutrients, S, green waste compost, Agriculture, heavy metals
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |