Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Developmental Dynami...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Dynamics
Article . 2004 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Msx1 disruption leads to diencephalon defects and hydrocephalus

Authors: Eduardo Soriano; C. Ramos; Antoine Bach; Benoît Robert; Pedro Fernández-Llebrez;

Msx1 disruption leads to diencephalon defects and hydrocephalus

Abstract

AbstractWe have analyzed the expression of the Msx1 gene in the developing mouse brain and examined the brain phenotype in homozygotes. Msx1 is expressed in every cerebral vesicle throughout development, particularly in neuroepithelia, such as those of the fimbria and the medulla. Timing analysis suggests that Msx1nLacZ cells delaminate and migrate radially from these epithelia, mainly at embryonic days 14–16, while immunohistochemistry studies reveal that some of the β‐galactosidase migrating cells are oligodendrocytes or astrocytes. Our results suggest that the Msx1 neuroepithelia of fimbria and medulla may be a source of glial precursors. The Msx1 mutants display severe hydrocephalus at birth, while the subcommissural organ, the habenula, and the posterior commissure fail to develop correctly. No label was detected in the mutant subcommissural organ using a specific antibody against Reissner's fiber. Besides, the fasciculus retroflexus deviates close to the subcommissural organ, while the paraventricular thalamic nucleus shows histological disorganization. Our results implicate the Msx1 gene in the differentiation of the subcommissural organ cells and posterior commissure and that Msx1 protein may play a role in the pathfinding and bundling of the fasciculus retroflexus and in the structural arrangement of the paraventricular thalamic nucleus. Developmental Dynamics 230:446–460, 2004. © 2004 Wiley‐Liss, Inc.

Keywords

Homeodomain Proteins, MSX1 Transcription Factor, Homozygote, Mice, Mutant Strains, Mice, Oligodendroglia, Astrocytes, Mutation, Animals, Diencephalon, Hydrocephalus

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    41
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
41
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!