
Abstract Like how useful weather forecasting is, the capability of forecasting or predicting cyber threats can never be overestimated. Previous investigations show that cyber attack data exhibits interesting phenomena, such as long-range dependence and high nonlinearity, which impose a particular challenge on modeling and predicting cyber attack rates. Deviating from the statistical approach that is utilized in the literature, in this paper we develop a deep learning framework by utilizing the bi-directional recurrent neural networks with long short-term memory, dubbed BRNN-LSTM. Empirical study shows that BRNN-LSTM achieves a significantly higher prediction accuracy when compared with the statistical approach.
GARCH, Computer engineering. Computer hardware, BRNN-LSTM, Computer Sciences, Deep learning, QA75.5-76.95, ARIMA, RNN, Hybrid models, TK7885-7895, Electronic computers. Computer science, LSTM
GARCH, Computer engineering. Computer hardware, BRNN-LSTM, Computer Sciences, Deep learning, QA75.5-76.95, ARIMA, RNN, Hybrid models, TK7885-7895, Electronic computers. Computer science, LSTM
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 54 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
