Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Trialsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Trials
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Trials
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Trials
Article . 2021
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2020
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Trials
Article . 2020
Data sources: DOAJ
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Accuracy of time to treatment estimates in the CRASH-3 clinical trial: impact on the trial results

Authors: Raoul Mansukhani; Lauren Frimley; Haleema Shakur-Still; Linda Sharples; Ian Roberts;

Accuracy of time to treatment estimates in the CRASH-3 clinical trial: impact on the trial results

Abstract

Abstract Background Early treatment with tranexamic acid may reduce deaths after traumatic brain injury (TBI). In mild and moderate TBI, there is a time to treatment interaction, with early treatment being most beneficial. Time to treatment was recorded by clinicians and is subject to error. Using monitoring data from the CRASH-3 trial, we examine the impact of errors in time to treatment on estimated treatment effects. Methods The CRASH-3 trial was a randomised trial of the effect of tranexamic acid on death and vascular occlusive events in 12,737 TBI patients. This analysis includes the 8107 patients with a Glasgow coma scale score of 9 to 15 since previous analyses showed that these patients benefit most from early treatment. Clinician-recorded time to treatment was checked against ambulance and hospital records for 1368/12,737 (11%) patients. Patients who died were preferentially selected for monitoring and we monitored 36% of head injury deaths. We describe measurement errors using Bland-Altman graphs. We model the effect of tranexamic acid on head injury death using logistic regression with a time-treatment interaction term. We use regression calibration, multiple imputation and Bayesian analysis to estimate the impact of time to treatment errors. Results Clinicians rounded times to the nearest half or full hour in 66% of cases. Monitored times were also rounded and were identical to clinician times in 63% of patients. Times were underestimated by an average of 9 min (95% CI − 85, 66). There was more variability between clinician-recorded and monitored times in low- and middle-income countries than in high-income countries. The treatment effect estimate at 1 h was greater for monitored times OR = 0.61 (95% CI 0.47, 0.81) than for clinician-recorded times OR = 0.63 (95% CI 0.48, 0.83). All three adjustment methods gave similar time to treatment interactions. For Bayesian methods, the treatment effect at 1 h was OR = 0.58 (95% CI 0.43, 0.78). Using monitored times increased the time-treatment interaction term from 1.15 (95% CI 1.03, 1.27) to 1.16 (95% CI 1.05, 1.28). Conclusions Accurate estimation of time from injury to treatment is challenging, particularly in low resource settings. Adjustment for known errors in time to treatment had minimal impact on the trial results. Trial registration ClinicalTrials.gov NCT01402882. Registered on 25 July 2011

Keywords

Adult, Male, Tranexamic acid, Medicine (General), Monitoring, Adolescent, Time-to-Treatment, Young Adult, Traumatic brain injury, R5-920, Brain Injuries, Traumatic, Humans, Glasgow Coma Scale, Child, Research, Infant, Newborn, Infant, Bayes Theorem, Middle Aged, Antifibrinolytic Agents, Tranexamic Acid, Child, Preschool, Antifibrinolytic, Female, measurement error

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Green
gold
Related to Research communities