<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 31334644
The functional role of human milk oligosaccharides (HMOs) is closely associated with their type, composition, and structure. However, a detailed analysis of HMOs is difficult because neutral oligosaccharides (NHMOs) are mixed with sialylated oligosaccharides (SHMOs) in milk. Here, NHMOs were separated from SHMOs by DEAE-52 anion chromatography, and lactose was removed by graphite carbon solid-phase extraction. Lactose-free NHMOs were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) based on Girard's reagent P on-target derivatization (GPOD), and SHMOs were analyzed by MALDI-TOF-MS following selective sialic acid derivatization and GPOD. Sixty-four oligosaccharides were detected: 36 NHMOs, of which 28 were fucosylated, and 28 SHMOs, of which 8 with α-2,3-linked monosialic acid, 2 with α-2,3-linked disialic acid, 10 with α-2,6-linked monosialic acid, 2 with α-2,6-linked disialic acid, and 5 with both α-2,3- and α-2,6-linked disialic acid. These findings provide the groundwork for further characterization of the structure and activity of HMOs.
Betaine, Milk, Human, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization, Humans, Oligosaccharides, Female, N-Acetylneuraminic Acid
Betaine, Milk, Human, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization, Humans, Oligosaccharides, Female, N-Acetylneuraminic Acid
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 30 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |