
Abstract This study proposes a novel network growth model named ComAwareNetGrowth which aims to mimic evolution of real- world social networks. The model works in discrete time. At each timestep, a new link (I) within-community or (II) anywhere in the network is created (a) between existing nodes or (b) between an existing node and a newcoming node, based on (i) random graph model, (ii) preferential attachment model, (iii) a triangle- closing model, or (iv) a quadrangle-closing model. Parameters control the probability of employing a particular mechanism in link creation. Experimental results on Karate and Caltech social networks shows that the model is able to mimic real-word social networks in terms of clustering coefficient, modularity, average path length, diameter, and power law exponent. Further experiments indicate that ComAwareNetGrowth model is able to generate variety of synthetic networks with different statistics. Editor: H. Kemal İlter, Ankara Yıldırım Beyazıt University, Turkey Received: August 19, 2018, Accepted: October 18, 2018, Published: November 10, 2018 Copyright: © 2018 IMISC Gürsoy, Badur. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Social and Information Networks (cs.SI), FOS: Computer and information sciences, Physics - Physics and Society, FOS: Physical sciences, Computer Science - Social and Information Networks, Physics and Society (physics.soc-ph)
Social and Information Networks (cs.SI), FOS: Computer and information sciences, Physics - Physics and Society, FOS: Physical sciences, Computer Science - Social and Information Networks, Physics and Society (physics.soc-ph)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
