
arXiv: 1803.01618
This paper presents refinements to the execution-cache-memory performance model and a previously published power model for multicore processors. The combination of both enables a very accurate prediction of performance and energy consumption of contemporary multicore processors as a function of relevant parameters such as number of active cores as well as core and Uncore frequencies. Model validation is performed on the Sandy Bridge-EP and Broadwell-EP microarchitectures. Production-related variations in chip quality are demonstrated through a statistical analysis of the fit parameters obtained on one hundred Broadwell-EP CPUs of the same model. Insights from the models are used to explain the performance- and energy-related behavior of the processors for scalable as well as saturating (i.e., memory-bound) codes. In the process we demonstrate the models' capability to identify optimal operating points with respect to highest performance, lowest energy-to-solution, and lowest energy-delay product and identify a set of best practices for energy-efficient execution.
Performance (cs.PF), FOS: Computer and information sciences, Computer Science - Performance
Performance (cs.PF), FOS: Computer and information sciences, Computer Science - Performance
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
