Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Natural genetic transformation of Vibrio parahaemolyticus via pVA1 plasmid acquisition as a potential mechanism causing AHPND

Authors: Gerardo de, Carrillo-Méndez; Lina Angélica, Zermeño-Cervantes; Alberto Antony, Venancio-Landeros; Sergio Francisco, Díaz; César Salvador, Cardona-Félix;

Natural genetic transformation of Vibrio parahaemolyticus via pVA1 plasmid acquisition as a potential mechanism causing AHPND

Abstract

Vibrio parahaemolyticus is the causative bacterium of acute hepatopancreatic necrosis disease (AHPND) in white shrimp Litopenaeus vannamei. This bacterium secretes protein toxins whose genes are encoded in an auto-transmissible plasmid called pVA1. The presence of this plasmid in V. parahaemolyticus is determinant for disease development. Its propagation is not only linked to bacterial colonisation capacity but also to horizontal gene transfer mechanisms. Nevertheless, the active uptake of plasmid, which is known as natural genetic transformation (NGT), has not yet been proposed as a possible acquisition mechanism of the pVA1 plasmid among Vibrio species. Previous studies suggest that some Vibrio species have the ability to undergo NGT in the presence of chitin. Therefore, the objective of this study was to evaluate the induction of NGT mediated by chitin in V. parahaemolyticus (ATCC-17802) through its ability to incorporate and express the pVA1 plasmid. The results showed that a reference strain that does not initially contain the plasmid can incorporate the plasmid under the appropriate transformation conditions, and cause mortality in white shrimp similar to that observed for pathogenic strains isolated from infectious outbreaks. Given the management and conditions of a shrimp farm with large amounts of chitinous exoskeletons, it is feasible that NGT could be a possible acquisition mechanism of plasmid pVA1 among Vibrio species, turning a non-causative strain of V. parahaemolyticus into a causative strain. With this study, we have expanded the knowledge of the pathogenesis process mediated by NGT and the understanding of the possible propagation mechanisms of emerging diseases in the aquaculture sector.

Keywords

Transformation, Genetic, Penaeidae, Animals, Aquaculture, Vibrio parahaemolyticus, Plasmids

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!