
doi: 10.3390/a13060149
The Evasion Problem is the question of whether—given a collection of sensors and a particular movement pattern over time—it is possible to stay undetected within the domain over the same stretch of time. It has been studied using topological techniques since 2006—with sufficient conditions for non-existence of an Evasion Path provided by de Silva and Ghrist; sufficient and necessary conditions with extended sensor capabilities provided by Adams and Carlsson; and sufficient and necessary conditions using sheaf theory by Krishnan and Ghrist. In this paper, we propose three algorithms for the Evasion Problem: one distributed algorithm extension of Adams’ approach for evasion path detection, and two different approaches to evasion path enumeration.
distributed algorithm, Industrial engineering. Management engineering, Electronic computers. Computer science, evasion path, QA75.5-76.95, T55.4-60.8
distributed algorithm, Industrial engineering. Management engineering, Electronic computers. Computer science, evasion path, QA75.5-76.95, T55.4-60.8
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
