Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Bioinformaticsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Bioinformatics
Article . 2009 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Bioinformatics
Article
License: implied-oa
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Bioinformatics
Article . 2010
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2009
License: CC BY NC
Data sources: PubMed Central
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
BiPrints
Article . 2009
License: "In Copyright" Rights Statement
Data sources: BiPrints
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Publications at Bielefeld University
Article . 2009
License: "In Copyright" Rights Statement
DBLP
Article
Data sources: DBLP
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Significant speedup of database searches with HMMs by search space reduction with PSSM family models

Authors: Beckstette, Michael; Homann, Robert; Giegerich, Robert; Kurtz, Stefan;

Significant speedup of database searches with HMMs by search space reduction with PSSM family models

Abstract

Abstract Motivation: Profile hidden Markov models (pHMMs) are currently the most popular modeling concept for protein families. They provide sensitive family descriptors, and sequence database searching with pHMMs has become a standard task in today's genome annotation pipelines. On the downside, searching with pHMMs is computationally expensive. Results: We propose a new method for efficient protein family classification and for speeding up database searches with pHMMs as is necessary for large-scale analysis scenarios. We employ simpler models of protein families called position-specific scoring matrices family models (PSSM-FMs). For fast database search, we combine full-text indexing, efficient exact p-value computation of PSSM match scores and fast fragment chaining. The resulting method is well suited to prefilter the set of sequences to be searched for subsequent database searches with pHMMs. We achieved a classification performance only marginally inferior to hmmsearch, yet, results could be obtained in a fraction of runtime with a speedup of >64-fold. In experiments addressing the method's ability to prefilter the sequence space for subsequent database searches with pHMMs, our method reduces the number of sequences to be searched with hmmsearch to only 0.80% of all sequences. The filter is very fast and leads to a total speedup of factor 43 over the unfiltered search, while retaining >99.5% of the original results. In a lossless filter setup for hmmsearch on UniProtKB/Swiss-Prot, we observed a speedup of factor 92. Availability: The presented algorithms are implemented in the program PoSSuMsearch2, available for download at http://bibiserv.techfak.uni-bielefeld.de/possumsearch2/. Contact: beckstette@zbh.uni-hamburg.de Supplementary information: Supplementary data are available at Bioinformatics online.

Country
Germany
Related Organizations
Keywords

Computational Biology, Proteins, Original Papers, Markov Chains, Pattern Recognition, Automated, Sequence Analysis, Protein, Position-Specific Scoring Matrices, Databases, Protein, Sequence Alignment, Algorithms, Software

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Average
Average
Average
Green
gold