Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Combinato...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Combinatorial Theory Series B
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2012
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2011
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

H-coloring tori

\(H\)-coloring tori
Authors: John Engbers; David J. Galvin;
Abstract

For graphs $G$ and $H$, an $H$-coloring of $G$ is a function from the vertices of $G$ to the vertices of $H$ that preserves adjacency. $H$-colorings encode graph theory notions such as independent sets and proper colorings, and are a natural setting for the study of hard-constraint models in statistical physics. We study the set of $H$-colorings of the even discrete torus ${\mathbb Z}^d_m$, the graph on vertex set ${0, ..., m-1}^d$ ($m$ even) with two strings adjacent if they differ by 1 (mod $m$) on one coordinate and agree on all others. This is a bipartite graph, with bipartition classes ${\mathcal E}$ and ${\mathcal O}$. In the case $m=2$ the even discrete torus is the discrete hypercube or Hamming cube $Q_d$, the usual nearest neighbor graph on ${0,1}^d$. We obtain, for any $H$ and fixed $m$, a structural characterization of the space of $H$-colorings of ${\mathbb Z}^d_m$. We show that it may be partitioned into an exceptional subset of negligible size (as $d$ grows) and a collection of subsets indexed by certain pairs $(A,B) \in V(H)^2$, with each $H$-coloring in the subset indexed by $(A,B)$ having all but a vanishing proportion of vertices from ${\mathcal E}$ mapped to vertices from $A$, and all but a vanishing proportion of vertices from ${\mathcal O}$ mapped to vertices from $B$. This implies a long-range correlation phenomenon for uniformly chosen $H$-colorings of ${\mathbb Z}^d_m$ with $m$ fixed and $d$ growing. Our proof proceeds through an analysis of the entropy of a uniformly chosen $H$-coloring, and extends an approach of Kahn, who had considered the special case of $m=2$ and $H$ a doubly infinite path. All our results generalize to a natural weighted model of $H$-colorings.

29 pages, some corrections and minor revisions from earlier version, this version to appear in Journal of Combinatorial Theory Series B

Country
United States
Related Organizations
Keywords

Statistics and Probability, discrete torus, Computer Sciences, Graph homomorphisms, Entropy, discrete hypercube, 511, graph homomorphisms, Discrete hypercube, Discrete torus, Hypergraphs, Graph coloring, Coloring of graphs and hypergraphs, 05C15, Isomorphism problems in graph theory (reconstruction conjecture, etc.) and homomorphisms (subgraph embedding, etc.), graph coloring, FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO), entropy, Mathematics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Top 10%
Average
Green
bronze