Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Neurosciencearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neuroscience
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuroscience
Article . 2007 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Neuroscience
Article . 2008
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A high soy diet reduces programmed cell death and enhances bcl-xL expression in experimental stroke

Authors: Tara Lovekamp-Swan; Derek A. Schreihofer; Michele L. Glendenning;

A high soy diet reduces programmed cell death and enhances bcl-xL expression in experimental stroke

Abstract

Soy phytoestrogens have been proposed as an alternative to estrogen replacement therapy and have demonstrated potential neuroprotective effects in the brain. We have shown that a high soy diet significantly reduces infarct size following permanent middle cerebral artery occlusion (MCAO). Here, we tested the hypothesis that a high soy diet would attenuate programmed cell death after stroke. Adult female Sprague-Dawley rats were ovariectomized and fed either an isoflavone-reduced diet (IFP) or a high soy diet (SP) for 2 weeks before undergoing 90 min of transient middle cerebral artery occlusion (tMCAO) followed by 22.5 h reperfusion. Infarct size, as assessed by triphenyltetrazolium chloride staining, was significantly reduced by a high soy diet (P<0.05). Apoptosis in the ischemic cortex, measured by TUNEL staining, was significantly reduced by the high soy diet. The number of active caspase-3 positive cells and caspase-mediated alpha-spectrin cleavage were also significantly decreased in the ischemic cortex of SP rats. Furthermore, nuclear translocation of apoptosis-inducing factor (AIF) was significantly reduced in the ischemic cortex of SP rats. Soy significantly increased bcl-x(L) mRNA and protein expression in the ischemic cortex compared with IFP rats. Immunohistochemistry revealed increased neuronal expression of bcl-2 and bcl-x(L) in the ischemic cortex of both IFP and SP rats following tMCAO. These results suggest that a high soy diet decreases both caspase-dependent and caspase-independent programmed cell death following tMCAO. Further, a high soy diet enhances expression of the cell survival factor bcl-x(L) following tMCAO, contributing to the neuroprotective effects of soy in the ischemic cortex.

Related Organizations
Keywords

Food, Formulated, Cell Survival, Active Transport, Cell Nucleus, Apoptosis Inducing Factor, Brain, Apoptosis, Estrogens, Infarction, Middle Cerebral Artery, Phytoestrogens, Rats, Rats, Sprague-Dawley, Disease Models, Animal, Neuroprotective Agents, Proto-Oncogene Proteins c-bcl-2, Caspases, Nerve Degeneration, Animals, Female, RNA, Messenger, Apoptosis Regulatory Proteins

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    52
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
52
Top 10%
Top 10%
Top 10%
bronze