
arXiv: 1901.10559
We propose a new fast randomized algorithm for interpolative decomposition of matrices which utilizes CountSketch. We then extend this approach to the tensor interpolative decomposition problem introduced by Biagioni et al. (J. Comput. Phys. 281, pp. 116-134, 2015). Theoretical performance guarantees are provided for both the matrix and tensor settings. Numerical experiments on both synthetic and real data demonstrate that our algorithms maintain the accuracy of competing methods, while running in less time, achieving at least an order of magnitude speed-up on large matrices and tensors.
29 pages, 2 figures; accepted to Adv Comput Math
tensor decomposition, Numerical linear algebra, sketching, FOS: Mathematics, Mathematics - Numerical Analysis, Numerical Analysis (math.NA), 15-02, Factorization of matrices, matrix decomposition
tensor decomposition, Numerical linear algebra, sketching, FOS: Mathematics, Mathematics - Numerical Analysis, Numerical Analysis (math.NA), 15-02, Factorization of matrices, matrix decomposition
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
