
Complementary metal oxide semiconductor (CMOS) is a low-power technology typically used in the efficient implementation of digital circuits. However, at nanodimensions, CMOS has problems due to its short channel effects and subthreshold leakage currents. These drawbacks can be overcome with quantum-dot cellular automata (QCA) which is one of the fastest nanotechnologies operated at THz rate. Thus, all digital circuits can now be implemented by QCA at the required nanoscale. This paper proposes a novel, energy-efficient and area-optimized 1-bit full adder design using QCA which provides efficient clocking, reduced cell count and reduced energy dissipation. The proposed design utilizes only 26 quantum cells in 0.02 µm2 area and has a reduction of 8% in number of cells, 75% in delay and 4% in energy dissipation at 1 K compared to the existing works. This innovative full adder design is used to implement a 4 × 4 Baugh–Wooley multiplier. The simulation results of the multiplier observed on QCADesigner 2.0.3 tool validate that the Baugh–Wooley multiplier designed with the novel 1-bit full adder yields better performance in terms of 9% reduction in area, 17.4% reduction in quantum cells used and reduced power dissipation of 2.44nW.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 23 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
