Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Human Molecular Gene...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Human Molecular Genetics
Article . 2004 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Expression of cardiac myosin-binding protein-C (cMyBP-C) in Drosophila as a model for the study of human cardiomyopathies

Authors: Thien Phong, Vu Manh; Mustapha, Mokrane; Emmanuelle, Georgenthum; Jeanne, Flavigny; Lucie, Carrier; Michel, Sémériva; Michel, Piovant; +1 Authors

Expression of cardiac myosin-binding protein-C (cMyBP-C) in Drosophila as a model for the study of human cardiomyopathies

Abstract

Mutations in the MYBPC3 gene encoding human cardiac myosin-binding protein-C (cMyBP-C) are associated with familial hypertrophic cardiomyopathy (FHC), but the molecular mechanisms involved are not fully understood. In addition, development of FHC is sensitive to genetic background, and the search for candidate modifier genes is crucial with a view to proposing diagnosis and exploring new therapies. We used Drosophila as the model to investigate the in vivo consequences of human cMyBP-C mutations. We first produced transgenic flies that specifically express human wild-type or two C-terminal truncated cMyBP-Cs in indirect flight muscles (IFM), a tissue particularly amenable to genetic and molecular analyses. First, incorporation of human cMyBP-C into the IFM led to sarcomeric structural abnormalities and to a flightless phenotype aggravated by age and human gene dosage. Second, transcriptome analysis of transgenic IFM using nylon microarrays showed the remodelling of a transcriptional program involving 97 out of 3570 Drosophila genes. Among them, the Calmodulin gene encoding a key component of muscle contraction, found up-regulated in transgenic IFM, was evaluated as a potential modifier gene. Calmodulin mutant alleles rescued the flightless phenotype, and therefore behave as dominant suppressors of the flightless phenotype suggesting that Calmodulin might be a modifier gene in the context of human FHC. In conclusion, we suggest that the combination of heterologous transgenesis and transcriptome analysis in Drosophila could be of great value as a way to glean insights into the molecular mechanisms underlying FHC and to propose potential candidate modifier genes.

Keywords

Models, Genetic, Gene Expression Profiling, Animals, Genetically Modified, Disease Models, Animal, Gene Expression Regulation, Mutation, Cardiomyopathy, Hypertrophic, Familial, Animals, Humans, Drosophila, Carrier Proteins, Muscle Contraction, Oligonucleotide Array Sequence Analysis

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Average
Average
Average
bronze