Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Marine Environmental...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-IRD
Article . 2019
Data sources: HAL-IRD
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-INSU
Article . 2019
Data sources: HAL-INSU
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Marine Environmental Research
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Photo-protective compounds in red macroalgae from Brittany: Considerable diversity in mycosporine-like amino acids (MAAs)

Authors: Lalegerie, Fanny; Lajili, Sirine; Bedoux, Gilles; Taupin, Laure; Stiger-Pouvreau, Valérie; Connan, Solène;

Photo-protective compounds in red macroalgae from Brittany: Considerable diversity in mycosporine-like amino acids (MAAs)

Abstract

To cope with the biotic and abiotic stresses experienced within their environment, marine macroalgae have developed certain defence mechanisms including the synthesis of photo-protective molecules against light and particularly harmful UV radiation. The aim of this study was to screen selected red algae, a highly diverse phylogenetic group, for the production of photo-protective molecules. The pigment content and composition (i.e. chlorophyll-a, phycobiliproteins and carotenoids) and the composition of mycosporine-like amino acids (MAAs) were studied in 40 species of red macroalgae collected in Brittany (France), at two distinct periods (i.e. February and July 2017). A high inter-specific variability was demonstrated in terms of pigment content and MAA composition. Twenty-three potential MAAs were detected by HPLC, and six were identified by LC-MS (i.e. shinorine, palythine, asterina-330, porphyra-334, usurijene and palythene). This is the first study to report on the composition of pigments and MAAs in a diverse group of red seaweeds from Brittany, including some species for which the MAA composition has never been studied before. Nevertheless, the results suggested that some species of red algae are more likely to cope with high levels of light radiation since those species such as Bostrychia scorpioides, Porphyra dioica, Gracilaria vermiculophylla and Vertebrata lanosa are living in environments exposed to higher levels of irradiation, and had various MAAs in addition to their photo-protective pigments.

Country
France
Keywords

Pigments, 570, [SDV.BIO]Life Sciences [q-bio]/Biotechnology, [CHIM.ANAL] Chemical Sciences/Analytical chemistry, Algae, Ultraviolet Rays, [SDU.STU.OC] Sciences of the Universe [physics]/Earth Sciences/Oceanography, [CHIM.ANAL]Chemical Sciences/Analytical chemistry, Metabolites, Photo-protection, MAAs, Amino Acids, [SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography, Phylogeny, Diversity, ACL, Seaweed, Adaptation, Physiological, [SDV.BIO] Life Sciences [q-bio]/Biotechnology, Rhodophyta, Screening, France, HPLC

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    79
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
79
Top 1%
Top 10%
Top 1%
Green
bronze