<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.1139/g92-132
pmid: 1427063
Heat shock response was investigated in three species of the obscura group of the Drosophila genus (D. subobscura, D. guanche, and D. madeirensis) by chromosome cytology analysis and [3H]uridine labeling. A set of eight puffs (2C, 15DE, 18C, 27A, 31CD, 85AB, 89A, and 94A) were induced after heat treatments in each of the three species; 18C, 27A, 89A, and 94A were the most heavily labeled in the autoradiograms after the induced conditions. From the in situ results using the major heat shock genes of D. melanogaster as a probe, it was inferred that the 18C, 94A, 89A, and 27A loci of the three obscura group species are homologous to D. melanogaster loci, which contain, HSP82, HSP70, HSP68, and HSPs encoding for the small heat shock proteins, respectively. When this organization was compared with that of D. melanogaster, fewer evolutionary changes, mainly gene duplications, were found to have occurred in the obscura group species than in the D. melanogaster group. In the three species analyzed in this work, as well as in the other Drosophila species studied, the heat shock genes are distributed on D and E Muller's elements, behaving as single copy genes that do not move around the genome.Key words: Drosophila, obscura group, polytene chromosome, heat shock.
Drosophila melanogaster, Hot Temperature, Molecular Probes, Animals, Drosophila, Biological Evolution, Chromosomes, Heat-Shock Proteins, Chromosome Banding
Drosophila melanogaster, Hot Temperature, Molecular Probes, Animals, Drosophila, Biological Evolution, Chromosomes, Heat-Shock Proteins, Chromosome Banding
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 22 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |