
Tiling is a well-known pattern mining technique. Traditionally, it discovers large areas of ones in binary databases or matrices, where an area is defined by a set of rows and a set of columns. In this paper, we introduce the novel problem of ranked tiling, which is concerned with finding interesting areas in ranked data. In this data, each transaction defines a complete ranking of the columns. Ranked data occurs naturally in applications like sports or other competitions. It is also a useful abstraction when dealing with numeric data in which the rows are incomparable. We introduce a scoring function for ranked tiling, as well as an algorithm using constraint programming and optimization principles. We empirically evaluate the approach on both synthetic and real-life datasets, and demonstrate the applicability of the framework in several case studies. One case study involves a heterogeneous dataset concerning the discovery of biomarkers for different subtypes of breast cancer patients. An analysis of the tiles by a domain expert shows that our approach can lead to the discovery of novel insights.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 14 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
