Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Pressure ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Pressure Vessel Technology
Article . 2020 . Peer-reviewed
License: ASME Site License Agreemen
Data sources: Crossref
https://doi.org/10.1115/pvp201...
Article . 2018 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fatigue Crack Growth for Ferritic Steel Under Negative Stress Ratio

Authors: Yoshihito Yamaguchi; Kunio Hasegawa; Yinsheng Li;

Fatigue Crack Growth for Ferritic Steel Under Negative Stress Ratio

Abstract

Abstract The phenomenon of crack closure is important in the prediction of fatigue crack growth behavior. Many experimental data indicate crack closures during fatigue crack growths both under tensile–tensile loads and tensile–compressive loads at constant amplitude loading cycles, depending on the magnitude of applied load amplitudes and stress ratios. Appendix A-4300 of the ASME Code Section XI provides two equations of fatigue crack growth rates for ferritic steels expressed by stress intensity factor ranges at negative stress ratios. The boundary of the two equations is classified with the magnitude of applied stress intensity factor ranges, in consideration of the crack closures. However, the boundary value provided by the ASME Code Section XI is not technically well known. The objective of this paper is to investigate the influence of the magnitudes of the applied stress intensity factor ranges on the crack closures. Fatigue crack growth tests using ferritic steel specimens were performed in air environment at room and high temperatures. From the crack closures obtained by the tests, it was found a new boundary which is smaller than the definition given by the Appendix A-4300.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!