Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ European Journal of ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
MPG.PuRe
Article . 1999
Data sources: MPG.PuRe
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
European Journal of Neuroscience
Article . 1999 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Alternative splicing generates a novel isoform of the rat metabotropic GABABR1 receptor

Authors: Pfaff, T.; Malitschek, B.; Kaupmann, K.; Prézeau, L.; Pin, J. P.; Bettler, B.; Karschin, A.;

Alternative splicing generates a novel isoform of the rat metabotropic GABABR1 receptor

Abstract

AbstractHere we present a novel isoform of the metabotropic G‐protein‐coupled receptor for γ‐aminobutyric acid (GABA). The isoform, termed GABABR1c (R1c), differs from the recently identified R1a and R1b receptors by an in‐frame insertion of 31 amino acids between the second extracellular loop and the fifth transmembrane region. Analysis of the rat GABABR1 gene demonstrates that the insertion is the result of an alternative splicing event within a 567‐bp intron between exons 16 and 17. In situ hybridization in the rat brain shows a wide distribution of R1c transcripts and an overlap with the R1a and R1b transcripts. The highest mRNA levels are found in cerebellar Purkinje cells, cerebral cortex, thalamus and hippocampal CA1 and CA3 regions. Western blots and immunodetection of recombinant epitope‐tagged receptors as well as [125I]CGP71872 photoaffinity labelling of cell membranes demonstrate that R1c is correctly expressed, although at a lower level than the previously identified isoforms. When coexpressed with the newly characterized GABABR2, R1c functionally couples to G‐protein‐activated Kir3.1/3.2 channels in Xenopus oocytes and to PLC‐activating chimeric Gαqo subunits in HEK‐293 cells with a similar EC50 for agonists. These data suggest that the R1c isoform represents a functional GABABR in the rat brain.

Keywords

Male, Base Sequence, Molecular Sequence Data, Brain, Cell Line, Rats, Alternative Splicing, Xenopus laevis, Receptors, GABA-B, GTP-Binding Proteins, Oocytes, Animals, Humans, Protein Isoforms, Tissue Distribution, Amino Acid Sequence, Rats, Wistar, In Situ Hybridization

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    78
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
78
Average
Top 10%
Top 10%
Green
bronze