
doi: 10.1007/bf02579239
Tibor Gallai made the following conjecture. LetG be ak-chromatic colour-critical graph. LetL denote the set of those vertices ofG having valencyk−1 and letH be the rest ofV(G). Then the number of components induced byL is not less than the number of components induced byH, providedL ≠ 0. We prove this conjecture in a slightly generalized form.
Connectivity, Coloring of graphs and hypergraphs, number of connected components, critical k-chromatic graphs, minor-vertices
Connectivity, Coloring of graphs and hypergraphs, number of connected components, critical k-chromatic graphs, minor-vertices
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 15 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
