Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao FEBS Lettersarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
FEBS Letters
Article . 2016 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
FEBS Letters
Article . 2017
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

γ‐Glutamyl kinase is involved in selective autophagy of ribosomes in Saccharomyces cerevisiae

Authors: Yuki Tatehashi; Hiroshi Takagi; Daisuke Watanabe;

γ‐Glutamyl kinase is involved in selective autophagy of ribosomes in Saccharomyces cerevisiae

Abstract

γ‐Glutamyl kinase (GK; the PRO1 gene product) is a key enzyme in the Saccharomyces cerevisiae proline biosynthesis pathway. Δpro1 cells are more sensitive to various stresses than wild‐type cells, suggesting that GK has an alternative function independent of proline biosynthesis. We show that PRO1 genetically interacts with UBP3, which encodes ubiquitin‐specific protease, and is required for selective autophagy of ribosomes (ribophagy). Interestingly, yeast cells with PRO1 deletion or expressing inactive GK display a defect for ribophagy but not for nonselective autophagy, indicating that GK activity is indispensable for ribophagy. Gene disruption analysis suggests that ribophagy is important for cell survival during nitrogen starvation.

Keywords

Saccharomyces cerevisiae Proteins, Proline, Ubiquitin, Saccharomyces cerevisiae, Phosphotransferases (Carboxyl Group Acceptor), Biosynthetic Pathways, Starvation, Endopeptidases, Autophagy, Ribosomes

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!