Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applications in Ener...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applications in Energy and Combustion Science
Article . 2022 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

BLASTNet: A call for community-involved big data in combustion machine learning

Authors: Wai Tong Chung; Ki Sung Jung; Jacqueline H. Chen; Matthias Ihme;

BLASTNet: A call for community-involved big data in combustion machine learning

Abstract

Many state-of-the-art machine learning (ML) fields rely on large datasets and massive deep learning models (with O(109) trainable parameters) to predict target variables accurately without overfitting. Within combustion, a wealth of data exists in the form of high-fidelity simulation data and detailed measurements that have been accumulating since the past decade. Yet, this data remains distributed and can be difficult to access. In this work, we present a realistic and feasible framework which combines (i) community involvement, (ii) public data repositories, and (iii) lossy compression algorithms for enabling broad access to high-fidelity data via a network-of-datasets approach. This Bearable Large Accessible Scientific Training Network-of-Datasets (BLASTNet) is consolidated on a community-hosted web-platform (at https://blastnet.github.io/), and is targeted towards improving accessibility to diverse scientific data for deep learning algorithms. For datasets that exceed the storage limitations in public ML repositories, we propose employing lossy compression algorithms on high-fidelity data, at the cost of introducing controllable amounts of error to the data. This framework leverages the well-known robustness of modern deep learning methods to noisy data, which we demonstrate is also applicable in combustion by training deep learning models on lossy direct numerical simulation (DNS) data in two completely different ML problems — one in combustion regime classification and the other in filtered reaction rate regression. Our results show that combustion DNS data can be compressed by at least 10-fold without affecting deep learning models, and that the resulting lossy errors can even improve their training. We thus call on the research community to help contribute to opening a bearable pathway towards accessible big data in combustion.

Related Organizations
Keywords

Big data, BLASTNet, TP315-360, Deep learning, HD9502-9502.5, Fuel, Energy industries. Energy policy. Fuel trade, Direct numerical simulation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
gold