Powered by OpenAIRE graph
Found an issue? Give us feedback
Physical Chemistry C...arrow_drop_down
Physical Chemistry Chemical Physics
Article . 2013 . Peer-reviewed
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Energy-transfer from Gd(iii) to Tb(iii) in (Gd,Yb,Tb)PO4 nanocrystals

Authors: Debasu, Mengistie L.; Ananias, Duarte; Rocha, Joao; Malta, Oscar L.; Carlos, Luis D.;

Energy-transfer from Gd(iii) to Tb(iii) in (Gd,Yb,Tb)PO4 nanocrystals

Abstract

The photoluminescence properties of (Gd,Yb,Tb)PO4 nanocrystals synthesized via a hydrothermal route at 150 °C are reported. Energy-transfer from Gd(3+) to Tb(3+) is witnessed by the detailed analyses of excited-state lifetimes, emission quantum yields, and emission and excitation spectra at room temperature, for Tb(3+) concentrations ranging from 0.5 to 5.0 mol%. Absolute-emission quantum yields up to 42% are obtained by exciting within the (6)I7/2-17/2 (Gd(3+)) manifold at 272 nm. The room temperature emission spectrum is dominated by the (5)D4 → (7)F5 (Tb(3+)) transition at 543 nm, with a long decay-time (3.95-6.25 ms) and exhibiting a rise-time component. The (5)D3 → (7)F6 (Tb(3+)) rise-time (0.078 ms) and the (6)P7/2 → (8)S7/2 (Gd(3+)) decay-time (0.103 ms) are of the same order, supporting the Gd(3+) to Tb(3+) energy-transfer process. A remarkably longer lifetime of 2.29 ms was measured at 11 K for the (6)P7/2 → (8)S7/2 (Gd(3+)) emission upon excitation at 272 nm, while the emission spectrum at 11 K is dominated by the (6)P7/2 → (8)S7/2 transition line, showing that the Gd(3+) to Tb(3+) energy-transfer process is mainly phonon-assisted with an efficiency of ~95% at room temperature. The Gd(3+) to Tb(3+) energy transfer is governed by the exchange mechanism with rates between 10(2) and 10(3) s(-1), depending on the energy mismatch conditions between the (6)I7/2 and (6)P7/2 levels of Gd(3+) and the Tb(3+ 5)I7, (5)F2,3 and (5)H5,6,7 manifolds and the radial overlap integral values.

Country
Portugal
Keywords

Luminescent Agents, COORDINATION-COMPOUNDS, VUV-UV EXCITATION, Gadolinium, HYDROTHERMAL SYNTHESIS, Phosphates, PHOTOLUMINESCENT PROPERTIES, Energy Transfer, ORGANIC-INORGANIC HYBRIDS, LUMINESCENCE, TB3+, NANOPARTICLES, Nanoparticles, Ytterbium, THEORETICAL APPROACH, Terbium, EMISSION QUANTUM YIELDS

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    53
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
53
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?