Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Electrochimica Actaarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Electrochimica Acta
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

Sintering Mechanisms of High-Performance Garnet-type Solid Electrolyte Densified by Spark Plasma Sintering

Authors: Hirotoshi Yamada; Tomoko Ito; Rajendra Hongahally Basappa;

Sintering Mechanisms of High-Performance Garnet-type Solid Electrolyte Densified by Spark Plasma Sintering

Abstract

Abstract Garnet-type solid electrolyte Li 6.5 La 3 Zr 1.5 Ta 0.5 O 12 (LLZT) was densified by using a spark plasma sintering (SPS) technique. Formation of impurities in the obtained pellets was studied in detail. It is revealed that impurities are strongly related to the SPS process: electrolysis of LLZT and electromigration of graphite. The electrolysis results in La 2 Zr 2 O 7 on anode of the SPS process, which is accompanied by reduction of Li 2 CO 3 to amorphous carbon on cathode. The electrolysis on SPS could be successfully suppressed by employing LLZT powder without Li 2 CO 3 . When these impurities were removed, pellets obtained by SPS exhibited electrochemical performance comparable with those densified by other methods total ionic conductivity of 6.9 × 10 −4 S cm −1 at 298 K and short-circuit prevention up to 100 μA cm −2 on dc polarization. The results confirm great advantage of SPS on manufacturing the dense garnet-type solid electrolytes: a low-temperature (900–1100 °C) and short-sintering-time process (10 min).

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    80
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
80
Top 1%
Top 10%
Top 10%
hybrid