Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Chemical ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Chemical Information and Modeling
Article . 2020 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Consistent Scheme for Gradient-Based Optimization of Protein–Ligand Poses

Authors: Florian Flachsenberg; Agnes Meyder; Kai Sommer; Patrick Penner; Matthias Rarey;

A Consistent Scheme for Gradient-Based Optimization of Protein–Ligand Poses

Abstract

Scoring and numerical optimization of protein-ligand poses is an integral part of docking tools. Although many scoring functions exist, many of them are not continuously differentiable and they are rarely explicitly analyzed with respect to their numerical optimization behavior. Here, we present a consistent scheme for pose scoring and gradient-based pose optimization. It consists of a novel variant of the BFGS algorithm enabling step-length control, named LSL-BFGS (limited step length BFGS), and the empirical JAMDA scoring function designed for pose prediction and good numerical optimizability. The JAMDA scoring function shows a high pose prediction performance in the CASF-2016 docking power benchmark, top-ranking a pose with an RMSD of ≤2 Å in about 89% of the cases. The combination of JAMDA scoring with the LSL-BFGS algorithm shows a significantly higher optimization locality (i.e., no excessive movement of poses) than with the classical BFGS algorithm while retaining the characteristically low number of scoring function evaluations. The JAMDA scoring and optimization scheme is freely available for noncommercial use and academic research.

Related Organizations
Keywords

Molecular Docking Simulation, Proteins, Ligands, Algorithms, Protein Binding

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    49
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
49
Top 1%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!