Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Известия высших учеб...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

DOPPLER SPECTRUM MATHEMATICAL MODEL OF SIGNAL SCATTERING FROM SEA SURFACE AT LOW GRAZING ANGLES

Authors: Mikhail A. Borodin; Vyacheslav N. Mikhaylov; Polina A. Filippova;

DOPPLER SPECTRUM MATHEMATICAL MODEL OF SIGNAL SCATTERING FROM SEA SURFACE AT LOW GRAZING ANGLES

Abstract

Introduction. Doppler spectra of signals which are scattered from sea surface and received by radar is used in oceanology and ecological monitoring applications. Existing models of Doppler spectra have the limitation of application because they are based on empirical data in changing conditions. Variability of the observation conditions critically influence on microwaves scattering by sea surface at low grazing angles which is typical for marine radiolocations. Objective. The goal of investigation proposed in this article is to develop the mathematical model of Doppler spectra at low grazing angles for microwave frequency range. Materials and methods. The two-dimensional problem of the scattering of an electromagnetic field on a cylindrical deterministic surface is considered. For generating of sea surface realizations is used linear model with spatial sea spectrum Elfohaily. The solution of the scattering problem is obtained for the case of vertical polarization of the incident electromagnetic field by the method of an integral equation with the control of the error of the solution. The mathematical modeling of the Doppler Spectrum of signal scattered by sea surface is produced by method of statistical trial. The case where the direction of the observation of the sea surface by radar is perpendicular to the direction of the wind is considered. The electromagnetic filed scattered in the direction of the radar receiver as a function of time is calculated for each generated sea surface realizations. Further, the set of variables of the implementation of scattered field is calculated for implementation of the Doppler spectrum. Results. The set of implementations of the Doppler spectrum provided its mathematical model with consist of deterministic and random component. The approximation of each aforesaid component is suggested and mathematical expressions for value component calculation are presented. The analyze of modeling result is produced. Conclusion. The developed mathematical model is offered to use for the design of algorithm sea surface condition estimation and pollutant detection using the signal which received by radar.

Related Organizations
Keywords

TK7800-8360, grazing angle of illumination, doppler spectrum of signal, modeling, sea surface, radio wave scattering, Electronics, radiolocation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
gold