<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Assembly and function of neuronal synapses require the coordinated expression of a yet undetermined set of genes. Although roughly a thousand genes are expected to be important for this function in Drosophila melanogaster, just a few hundreds of them are known so far.In this work we trained three learning algorithms to predict a "synaptic function" for genes of Drosophila using data from a whole-body developmental transcriptome published by others. Using statistical and biological criteria to analyze and combine the predictions, we obtained a gene catalogue that is highly enriched in genes of relevance for Drosophila synapse assembly and function but still not recognized as such.The utility of our approach is that it reduces the number of genes to be tested through hypothesis-driven experimentation.
Gene Expression Profiling, Computational Biology, Datasets as Topic, Gene Expression Regulation, Developmental, Models, Biological, Rats, Machine Learning, Organ Specificity, Synapses, Genetics, Animals, Humans, Drosophila, Transcriptome, Algorithms, Biotechnology, Research Article
Gene Expression Profiling, Computational Biology, Datasets as Topic, Gene Expression Regulation, Developmental, Models, Biological, Rats, Machine Learning, Organ Specificity, Synapses, Genetics, Animals, Humans, Drosophila, Transcriptome, Algorithms, Biotechnology, Research Article
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 15 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |