Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochimica et Biophy...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research
Article . 2014 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Activation of inflammasomes in podocyte injury of mice on the high fat diet: Effects of ASC gene deletion and silencing

Authors: Justin M. Abais; Todd W.B. Gehr; Yang Zhang; Guangbi Li; Pin-Lan Li; Krishna M. Boini; Min Xia; +1 Authors

Activation of inflammasomes in podocyte injury of mice on the high fat diet: Effects of ASC gene deletion and silencing

Abstract

Inflammasome, an intracellular inflammatory machinery, has been reported to be involved in a variety of chronic degenerative diseases such as atherosclerosis, autoinflammatory diseases and Alzheimer's disease. The present study hypothesized that the formation and activation of inflammasomes associated with apoptosis associated speck-like protein (ASC) are an important initiating mechanism resulting in obesity-associated podocyte injury and consequent glomerular sclerosis. To test this hypothesis, Asc gene knockout (Asc(-/-)), wild type (Asc(+/+)) and intrarenal Asc shRNA-transfected wild type (Asc shRNA) mice were fed a high fat diet (HFD) or normal diet (ND) for 12 weeks to produce obesity and associated glomerular injury. Western blot and RT-PCR analyses demonstrated that renal tissue Asc expression was lacking in Asc(-/-) mice or substantially reduced in Asc shRNA transfected mice compared to Asc(+/+) mice. Confocal microscopic and co-immunoprecipitation analysis showed that the HFD enhanced the formation of inflammasome associated with Asc in podocytes as shown by colocalization of Asc with Nod-like receptor protein 3 (Nalp3). This inflammasome complex aggregation was not observed in Asc(-/-) and local Asc shRNA-transfected mice. The caspase-1 activity, IL-1β production and glomerular damage index (GDI) were also significantly attenuated in Asc(-/-) and Asc shRNA-transfected mice fed the HFD. This decreased GDI in Asc(-/-) and Asc shRNA transfected mice on the HFD was accompanied by attenuated proteinuria, albuminuria, foot process effacement of podocytes and loss of podocyte slit diaphragm molecules. In conclusion, activation and formation of inflammasomes in podocytes are importantly implicated in the development of obesity-associated glomerular injury.

Keywords

Male, Inflammasomes, Blotting, Western, Asc, Diet, High-Fat, Real-Time Polymerase Chain Reaction, Inflammasome, Mice, Glomerulosclerosis, Animals, Gene Silencing, Obesity, Molecular Biology, Mice, Knockout, Podocytes, Reverse Transcriptase Polymerase Chain Reaction, Cell Biology, CARD Signaling Adaptor Proteins, Cytoskeletal Proteins, Nalp3, Apoptosis Regulatory Proteins, Gene Deletion

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    82
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
82
Top 10%
Top 10%
Top 10%
hybrid