Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Plant Directarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Plant Direct
Article . 2021 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Plant Direct
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Plant Direct
Article . 2021
Data sources: DOAJ
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Concerted increases of FAE1 expression level and substrate availability improve and singularize the production of very‐long‐chain fatty acids in Arabidopsis seeds

Authors: Shijie Ma; Chang Du; David C. Taylor; Meng Zhang;

Concerted increases of FAE1 expression level and substrate availability improve and singularize the production of very‐long‐chain fatty acids in Arabidopsis seeds

Abstract

AbstractOur initial goal was to evaluate the contributions of high 18:1 phosphatidylcholine and the expression level of FAE1 to the accumulation of very‐long‐chain fatty acids (VLCFAs), which have wide applications as industrial feedstocks. Unexpectedly, VLCFAs were not improved by increasing the proportions of 18:1 in fad2‐1 mutant, FAD2 artificial miRNA, and FAD2 co‐suppression lines. Expressing Arabidopsis FAE1 resulted in co‐suppression in 90% of transgenic lines, which was effectively released when it was expressed in the rdr6‐11 mutant host. When FAE1 could be highly expressed, apart from its naturally preferred product, 20:1, other saturated and polyunsaturated VLCFAs also accumulated in seeds. We postulated that overabundant FAE1 might cause the diversified VLCFA profile. When FAE1 was highly expressed, knocking down FAD2 increased the content of 20:1, suggesting that the 18:1 availability in the acyl‐CoA pool increased from the high 18:1‐PC via acyl editing. Concurrent decreases of side products like 22:1 and 20:0 in these lines suggest that increasing availability of the preferred substrate could suppress the side elongation reactions and reverse the effect of VLCFA product diversification due to overabundant FAE1. Re‐analysis of FAD2 knockdown lines indicated that increasing 18:1 led to a decrease of 22:1, which also supports the above hypothesis. These results demonstrate that 18:1 substrate could be increased by a downregulation of FAD2 and that a balance between the levels of enzyme and substrate may be crucial for engineering‐specific VLCFA products.

Related Organizations
Keywords

co‐suppression, FAE1, Arabidopsis, Botany, balance in abundance of FAE1 enzyme and its preferred substrate, substrate availability, QK1-989, side product, Original Research

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
Green
gold