Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2012
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On random convex analysis -- the analytic foundation of the module approach to conditional risk measures

Authors: Tiexin Guo; Shien Zhao; Xiaolin Zeng;

On random convex analysis -- the analytic foundation of the module approach to conditional risk measures

Abstract

To provide a solid analytic foundation for the module approach to conditional risk measures, this paper establishes a complete random convex analysis over random locally convex modules by simultaneously considering the two kinds of topologies (namely the $(\varepsilon,��)$--topology and the locally $L^0$-- convex topology). Then, we make use of the advantage of the $(\varepsilon,��)$--topology and grasp the local property of $L^0$--convex conditional risk measures to prove that every $L^{0}$--convex $L^{p}$--conditional risk measure ($1\leq p\leq+\infty$) can be uniquely extended to an $L^{0}$--convex $L^{p}_{\mathcal{F}}(\mathcal{E})$--conditional risk measure and that the dual representation theorem of the former can also be regarded as a special case of that of the latter, which shows that the study of $L^p$--conditional risk measures can be incorporated into that of $L^{p}_{\mathcal{F}}(\mathcal{E})$--conditional risk measures. In particular, in the process we find that combining the countable concatenation hull of a set and the local property of conditional risk measures is a very useful analytic skill that may considerably simplify and improve the study of $L^{0}$--convex conditional risk measures.

69 pages

Related Organizations
Keywords

Mathematics - Functional Analysis, FOS: Economics and business, Risk Management (q-fin.RM), 46A22, 46A25, 46H25, 47H40, 52A41, 91B16, 91B30, 91B70, FOS: Mathematics, Quantitative Finance - Risk Management, Functional Analysis (math.FA)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green