Downloads provided by UsageCounts
handle: 10261/127327 , 2117/23369
This paper addresses a chance-constrained model predictive control (CC-MPC) strategy for the management of drinking water networks (DWNs) based on a finite horizon stochastic optimisation problem with joint probabilistic (chance) constraints. In this approach, water demands are considered additive stochastic disturbances with non-stationary uncertainty description, unbounded support and known (or approximated) quasi-concave probabilistic distribution. A deterministic equivalent of the stochastic problem is formulated using Boole's inequality to decompose joint chance constraints into single chance constraints and by considering a uniform allocation of risk to bound these later constraints. The resultant deterministic-equivalent optimisation problem is suitable to be solved with tractable quadratic programming (QP) or second order cone programming (SOCP) algorithms. The reformulation allows to explicitly and easily propagate uncertainty over the prediction horizon, and leads to a cost-efficient management of risk that consists in a dynamic back-off to avoid frequent violation of constraints. Results of applying the proposed approach to a real case study - the Barcelona DWN (Spain) - have shown that the network performance (in terms of operational costs) and the necessary back-off (to cope with stochastic disturbances) are optimised simultaneously within a single problem, keeping tractability of the solution, even in large-scale networks. The general formulation of the approach and the automatic computation of proper back-off within the MPC framework replace the need of experience-based heuristics or bi-level optimisation schemes that might compromise the trade-off between profits, reliability and computational burden.
This work has been partially supported by the EU Project EFFINET (FP7-ICT-2011-8-31855) and the DGR of Generalitat de Catalunya (SAC group Ref. 2009/SGR/1491).
Peer Reviewed
:Informàtica::Automàtica i control [Àrees temàtiques de la UPC], Drinking water networks, Aigua -- Abastament -- Control, Reliability, Chance constraints, MPC, Àrees temàtiques de la UPC::Informàtica::Automàtica i control, Water-supply -- Management -- Mathematical models, Robustness
:Informàtica::Automàtica i control [Àrees temàtiques de la UPC], Drinking water networks, Aigua -- Abastament -- Control, Reliability, Chance constraints, MPC, Àrees temàtiques de la UPC::Informàtica::Automàtica i control, Water-supply -- Management -- Mathematical models, Robustness
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 123 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 112 | |
| downloads | 253 |

Views provided by UsageCounts
Downloads provided by UsageCounts