Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Filomatarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Filomat
Article . 2018 . Peer-reviewed
License: CC 0
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Filomat
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2018
Data sources: zbMATH Open
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Partial soft separation axioms and soft compact spaces

Authors: El-Shafei, M. E.; Abo-Elhamayel, M.; Al-Shami, T. M.;

Partial soft separation axioms and soft compact spaces

Abstract

The main aim of the present paper is to define new soft separation axioms which lead us, first, to generalize existing comparable properties via general topology, second, to eliminate restrictions on the shape of soft open sets on soft regular spaces which given in [22], and third, to obtain a relationship between soft Hausdorff and new soft regular spaces similar to those exists via general topology. To this end, we define partial belong and total non belong relations, and investigate many properties related to these two relations. We then introduce new soft separation axioms, namely p-soft Ti-spaces (i = 0,1,2,3,4), depending on a total non belong relation, and study their features in detail. With the help of examples, we illustrate the relationships among these soft separation axioms and point out that p-soft Ti-spaces are stronger than soft Ti-spaces, for i = 0,1,4. Also, we define a p-soft regular space, which is weaker than a soft regular space and verify that a p-soft regular condition is sufficient for the equivalent among p-soft Ti-spaces, for i = 0,1,2. Furthermore, we prove the equivalent among finite p-soft Ti-spaces, for i = 1,2,3 and derive that a finite product of p-soft Ti-spaces is p-soft Ti, for i = 0,1,2,3,4. In the last section, we show the relationships which associate some p-soft Ti-spaces with soft compactness, and in particular, we conclude under what conditions a soft subset of a p-soft T2-space is soft compact and prove that every soft compact p-soft T2-space is soft T3-space. Finally, we illuminate that some findings obtained in general topology are not true concerning soft topological spaces which among of them a finite soft topological space need not be soft compact.

Keywords

Fuzzy topology, Higher separation axioms (completely regular, normal, perfectly or collectionwise normal, etc.), Compactness, Local compactness, \(\sigma\)-compactness, Lower separation axioms (\(T_0\)--\(T_3\), etc.), \(p\)-soft \(T_i\)-space (\(i=0, 1, 2, 3, 4\)), partial belong and total non belong relation, soft regular, soft compactness and soft topological spaces

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    76
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
76
Top 1%
Top 10%
Top 1%
gold