
The etiology of schistosomiasis-associated pulmonary arterial hypertension (PAH), a major cause of PAH worldwide, is poorly understood. Schistosoma mansoni exposure results in prototypical type-2 inflammation. Furthermore, transforming growth factor (TGF)-β signaling is required for experimental pulmonary hypertension (PH) caused by Schistosoma exposure.We hypothesized type-2 inflammation driven by IL-4 and IL-13 is necessary for Schistosoma-induced TGF-β-dependent vascular remodeling.Wild-type, IL-4(-/-), IL-13(-/-), and IL-4(-/-)IL-13(-/-) mice (C57BL6/J background) were intraperitoneally sensitized and intravenously challenged with S. mansoni eggs to induce experimental PH. Right ventricular catheterization was then performed, followed by quantitative analysis of the lung tissue. Lung tissue from patients with schistosomiasis-associated and connective tissue disease-associated PAH was also systematically analyzed.Mice with experimental Schistosoma-induced PH had evidence of increased IL-4 and IL-13 signaling. IL-4(-/-)IL-13(-/-) mice, but not single knockout IL-4(-/-) or IL-13(-/-) mice, were protected from Schistosoma-induced PH, with decreased right ventricular pressures, pulmonary vascular remodeling, and right ventricular hypertrophy. IL-4(-/-)IL-13(-/-) mice had less pulmonary vascular phospho-signal transducer and activator of transcription 6 (STAT6) and phospho-Smad2/3 activity, potentially caused by decreased TGF-β activation by macrophages. In vivo treatment with a STAT6 inhibitor and IL-4(-/-)IL-13(-/-) bone marrow transplantation also protected against Schistosoma-PH. Lung tissue from patients with schistosomiasis-associated and connective tissue disease-associated PAH had evidence of type-2 inflammation.Combined IL-4 and IL-13 deficiency is required for protection against TGF-β-induced pulmonary vascular disease after Schistosoma exposure, and targeted inhibition of this pathway is a potential novel therapeutic approach for patients with schistosomiasis-associated PAH.
Knockout, Hypertension, Pulmonary, Respiratory System, Smad2 Protein, Vascular Remodeling, Cardiovascular, Inbred C57BL, Medical and Health Sciences, Mice, Rare Diseases, Transforming Growth Factor beta, schistosomiasis, pulmonary hypertension, 2.1 Biological and endogenous factors, Animals, Humans, Smad3 Protein, Aetiology, Phosphorylation, Lung, Bone Marrow Transplantation, Inflammation, Mice, Knockout, Interleukin-13, Macrophages, Interleukin-4 Receptor alpha Subunit, transforming growth factor-β, Pulmonary, Schistosoma mansoni, Th1 Cells, Schistosomiasis mansoni, Vector-Borne Diseases, Mice, Inbred C57BL, Th2 cells, Infectious Diseases, Good Health and Well Being, Hypertension, transforming growth factor-beta, Respiratory, Th17 Cells, Intercellular Signaling Peptides and Proteins, Interleukin-4, Digestive Diseases, STAT6 Transcription Factor, Cell Adhesion Molecules
Knockout, Hypertension, Pulmonary, Respiratory System, Smad2 Protein, Vascular Remodeling, Cardiovascular, Inbred C57BL, Medical and Health Sciences, Mice, Rare Diseases, Transforming Growth Factor beta, schistosomiasis, pulmonary hypertension, 2.1 Biological and endogenous factors, Animals, Humans, Smad3 Protein, Aetiology, Phosphorylation, Lung, Bone Marrow Transplantation, Inflammation, Mice, Knockout, Interleukin-13, Macrophages, Interleukin-4 Receptor alpha Subunit, transforming growth factor-β, Pulmonary, Schistosoma mansoni, Th1 Cells, Schistosomiasis mansoni, Vector-Borne Diseases, Mice, Inbred C57BL, Th2 cells, Infectious Diseases, Good Health and Well Being, Hypertension, transforming growth factor-beta, Respiratory, Th17 Cells, Intercellular Signaling Peptides and Proteins, Interleukin-4, Digestive Diseases, STAT6 Transcription Factor, Cell Adhesion Molecules
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 77 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
