
doi: 10.1155/2022/3778016
In this paper, we solve the fractional differential equations (FDEs) with boundary value conditions in Sobolev space H n 0,1 . The strategy is constructing multiscale orthonormal basis for H n 0,1 to get the approximation for the problems. The convergence of the method is proved, and it is tested on some numerical experiments; the tests show that our method is more efficient and accurate. The notion of numerical stability with respect to the condition number is introduced proving that the proposed method is numerically stable in this sense.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
