
pmid: 18658130
Neural stem/progenitor cells (NSCs) have the capacity for self-renewal and differentiation into major classes of central nervous system cell types, such as neurons, astrocytes, and oligodendrocytes. The determination of fate of NSCs appears to be regulated by both intrinsic and extrinsic factors. Mounting evidence has shown that extracellular matrix molecules contribute to NSC proliferation and differentiation as extrinsic factors. Here we explore the effects of the epidermal growth factor-like (EGFL) and fibronectin type III homologous domains 6-8 (FN6-8) of the extracellular matrix molecule tenascin-R on NSC proliferation and differentiation. Our results show that domain FN6-8 inhibited NSC proliferation and promoted NSCs differentiation into astrocytes and less into oligodendrocytes or neurons. The EGFL domain did not affect NSC proliferation, but promoted NSC differentiation into neurons and reduced NSC differentiation into astrocytes and oligodendrocytes. Treatment of NSCs with beta 1 integrin function-blocking antibody resulted in attenuation of inhibition of the effect of FN6-8 on NSC proliferation. The influence of EGFL or FN6-8 on NSCs differentiation was inhibited by beta 1 integrin antibody application, implicating beta 1 integrin in proliferation and differentiation induced by EGFL and FN6-8 mediated triggering of NSCs.
Neurons, Epidermal Growth Factor, Integrin beta1, Stem Cells, Cell Differentiation, Tenascin, Recombinant Proteins, Fibronectins, Protein Structure, Tertiary, Rats, Rats, Sprague-Dawley, Mice, Oligodendroglia, Astrocytes, Animals, Cells, Cultured
Neurons, Epidermal Growth Factor, Integrin beta1, Stem Cells, Cell Differentiation, Tenascin, Recombinant Proteins, Fibronectins, Protein Structure, Tertiary, Rats, Rats, Sprague-Dawley, Mice, Oligodendroglia, Astrocytes, Animals, Cells, Cultured
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 31 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
