
AbstractLet p and q be relatively prime natural numbers. Define T0 and S0 to be multiplication by p and q (mod 1) respectively, endomorphisms of [0,1).Let μ be a borel measure invariant for both T0 and S0 and ergodic for the semigroup they generate. We show that if μ is not Lebesgue measure, then with respect to μ both T0 and S0 have entropy zero. Equivalently, both T0 and S0 are μ-almost surely invertible.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 66 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
