Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://zenodo.org/r...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://zenodo.org/record/4390...
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2005
License: CC BY NC ND
Data sources: Datacite
https://doi.org/10.1117/12.624...
Article . 2005 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Diffuse optical tomography with an amplified ultrafast laser and a single-shot streak camera: application to real-time in vivo songbird neuro-imaging

Authors: Guillet De Chatellus, Hugues; Vignal, Clémentine; Ramstein, Stéphane; Verjat, Nicolas; Mathevon, Nicolas; Mottin, Stéphane;

Diffuse optical tomography with an amplified ultrafast laser and a single-shot streak camera: application to real-time in vivo songbird neuro-imaging

Abstract

{"references": ["J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg and G. Yodh, J. Cereb. Blood Flow Metab. 23, 911-924 (2003).", "N. Plesnila, C. Putz, M. Rinecker, J. Wiezorrek, L. Schleinkofer, A. E. Goetz and W. M. Kuebler, J. Neurosci. Methods 114, 107-117 (2002).", "Optics in Neurosciences, J. Biomed. Opt. (Jan/Feb 2005).", "M. Cope, D. T. Delpy, E. O. Reynolds, S. Wray, J. Wyatt and P. van der Zee, Adv. Exp. Med. Biol. 222, 183-9 (1988).", "D. T. Delpy, M. Cope, P. Van der Zee, S. Arridge, S. Wray and J. Wyatt, Phys. Med. Biol. 33, 1433-1442 (1988).", "H. Obrig and A. Villringer, J. Cereb. Blood Flow Metab. 23, 1-18 (2003).", "S. Mottin, J-M. Tualle, Introduction \u00e0 la transillumination in Lasers et Technologies femtosecondes, Ed. M. Sentis, O. Uteya, S. Mottin (PUSE, 2005), ISBN 9782862723839; htts://hal.archives-ouvertes.fr/INTEGRATIONS/age/lasers-et-technologies-femtosecondes.", "S. Ramstein, C. Vignal, N. Mathevon and S. Mottin, In vivo and non-invasive measurement of songbird head s optical properties; Applied Optics (2005); DOI 10.1364/AO.44.006197", "A. Brodeur and S. L. Chin, J. Opt. Soc. Am. B 16, 637-650 (1999)"]}

A new ultrafast Diffuse Optical Tomography (DOT) has been developed for real time in vivo brain metabolism monitoring in songbird. The technique is based on space resolved time of flight measurements of the photons across the brain tissues. A three dimensional reconstruction of the brain activity is foreseeable by means of a double space and time sampling of the reflectance signal. The setup and the treatment procedure are described in depth and promising preliminary results showing the response of brain tissues to hypercapnia stimulations (increase of CO2) are presented.

License CC-BY-NC-ND. --------- French law about open access and open science: https://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000033202746&categorieLien=id ----------------------- LOI n° 2016-1321 du 7 octobre 2016 pour une République numérique - Article 30.

Keywords

[PHYS]Physics [physics], time-resolved near-infrared spectroscopy, bird, http://id.loc.gov/authorities/subjects/sh89005705.html, [SDV.NEU.NB]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Neurobiology, http://id.loc.gov/authorities/subjects/sh91006099.html, 530, Diffuse Optical Tomography, neuro-imaging, http://id.loc.gov/authorities/subjects/sh85095181.html, brain energy metabolism, http://id.loc.gov/authorities/subjects/sh85091159.html, [SDV.IB]Life Sciences [q-bio]/Bioengineering, [SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 9
    download downloads 11
  • 9
    views
    11
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
1
Average
Average
Average
9
11
Green