Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Child Neu...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Detection of Intragenic SMN1 Mutations in Spinal Muscular Atrophy Patients With a Single Copy of SMN1

Authors: Keivan Basiri; Nayereh Nouri; Massoud Houshmand; Esmat Fazel-Najafabadi; Maryam Sedghi; Hamid Ganji; Omid Aryani; +1 Authors

Detection of Intragenic SMN1 Mutations in Spinal Muscular Atrophy Patients With a Single Copy of SMN1

Abstract

Proximal spinal muscular atrophy is an autosomal recessive disorder characterized by symmetrical muscle weakness due to degeneration of alpha motor neurons in the spinal cord. Homozygous deletions in the SMN1 have been reported in more than 90% of spinal muscular atrophy cases. Compound heterozygous patients account for approximately 4% of spinal muscular atrophy cases. In this study, we performed a quantitative test in 20 of 87 spinal muscular atrophy patients who did not have homozygous deletion of SMN1. Mutation screening of SMN1 gene was performed in 4 patients who have only 1 copy of SMN1 to identify intragenic mutations. In addition to a previously described missense mutation in exon 4 (p.A188S/ c.562G>T), we identified 2 novel mutations including a single nucleotide insertion in exon 7 (c.861_862insT/p.R288X) and a deletion of nucleotide G in exon 3 (c.286delG/p.D96Tfs*53). Our results suggested that about 4% of spinal muscular atrophy patients have subtle mutations and might be considered in laboratory examination.

Related Organizations
Keywords

Male, Heterozygote, DNA Mutational Analysis, Gene Dosage, Infant, Iran, Polymerase Chain Reaction, Survival of Motor Neuron 1 Protein, Muscular Atrophy, Spinal, Child, Preschool, Mutation, Humans, Female

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!