Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2014 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Basal and β-adrenergic regulation of the cardiac calcium channel Ca V 1.2 requires phosphorylation of serine 1700

Authors: Ruth E. Westenbroek; Ying Fu; William A. Catterall; Todd Scheuer;

Basal and β-adrenergic regulation of the cardiac calcium channel Ca V 1.2 requires phosphorylation of serine 1700

Abstract

Significance The heart contracts more forcefully in response to fear, stress, or exercise through the fight-or-flight response. This physiological process is mediated by β-adrenergic receptors acting through adenylyl cyclase, cAMP, and cAMP-dependent protein kinase (PKA), which phosphorylates the cardiac calcium channel Ca V 1.2 and increases its activity. We show that mutation of a single amino acid residue, Ser-1700, in a PKA phosphorylation site at the interface between the distal and proximal C-terminal domains substantially disrupts this regulatory mechanism in mice. Basal and β-adrenergic–stimulated calcium currents, myocyte contractility, and stress-induced exercise capacity are all reduced. Moreover, these mice develop cardiac hypertrophy, an indication of failure of cardiac homeostasis in vivo. Evidently, phosphorylation of Ser-1700 is a primary event in cardiovascular regulation.

Related Organizations
Keywords

Heart Failure, Models, Molecular, Dihydropyridines, Exercise Tolerance, Ion Transport, Calcium Channels, L-Type, Isoproterenol, Mutation, Missense, Arrhythmias, Cardiac, Adrenergic beta-Agonists, Cardiomyopathy, Hypertrophic, Adaptation, Physiological, Mice, Mutant Strains, Mice, Inbred C57BL, Mice, Amino Acid Substitution, Barium, Animals, Calcium, Casein Kinase II

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    76
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
76
Top 10%
Top 10%
Top 10%
bronze